# Existence of Periodic Points and Sharkovsky's Theorem 

## Trevor Hyde Summer@ICERM 2019

## Existence of Periodic Points

Central Question in Arithmetic Dynamics:
If $K$ is a field and $f(x) \in K[x]$ is a polynomial, for which $n \geq 1$ does $f(x)$ have a periodic point of period $n$ in $K$ ?
$\triangleright$ The answer really depends on the field $K$ !

## Theorem (Baker, 1964)

If $f(x) \in \mathbb{C}[x]$ has degree at least 2 and $n \geq 1$, then there exists a point $\alpha \in \mathbb{C}$ with primitive period $n$ unless $f(x)$ is conjugate to $x^{2}-\frac{3}{4}$ and $n=2$.

## Conjecture (Morton-Silverman, 1994)

Suppose $d \geq 2$, then there exists an absolute bound $B(d)$ such that for any polynomial $f(x) \in \mathbb{Q}[x]$ of degree $d$, if $\alpha \in \mathbb{Q}$ has primitive period $n$, then $n \leq B(d)$.

## Existence of Periodic Points over $\mathbb{R}$

Consider the following total ordering $\lessdot$ of the positive integers:

$$
\begin{aligned}
& 3 \lessdot 5 \lessdot 7 \lessdot 9 \lessdot \cdots \lessdot 2 \cdot 3 \lessdot 2 \cdot 5 \lessdot 2 \cdot 7 \lessdot \cdots \\
& \cdots \lessdot 4 \cdot 3 \lessdot 4 \cdot 5 \lessdot 4 \cdot 7 \lessdot \cdots \lessdot 8 \cdot 3 \lessdot 8 \cdot 5 \lessdot 8 \cdot 7 \lessdot \cdots \\
& \cdots \lessdot 8 \lessdot 4 \lessdot 2 \lessdot 1
\end{aligned}
$$

(Odds $\geq 3) \lessdot(2 \cdot$ Odds $\geq 3) \lessdot(4 \cdot$ Odds $\geq 3)$
$\lessdot(8 \cdot$ Odds $\geq 3) \lessdot \cdots \cdots \lessdot($ Powers of 2 in reverse order $)$
$\triangleright$ This is called the Sharkovsky ordering.

## Existence of Periodic Points over $\mathbb{R}$

$$
3 \lessdot 5 \lessdot 7 \lessdot 9 \lessdot \cdots \lessdot 2 \cdot 3 \lessdot 2 \cdot 5 \lessdot 2 \cdot 7 \lessdot \cdots \lessdot 4 \cdot 3 \lessdot 4 \cdot 5 \lessdot 4 \cdot 7 \lessdot \cdots
$$

## Theorem (Sharkovsky, 1960's)

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. If there exists a point $\alpha \in \mathbb{R}$ with primitive period $m$, then there exists a point $\beta \in \mathbb{R}$ with primitive period $n$ for every $m \lessdot n$.

For every positive integer $m$ there exists some continuous function $f_{m}: \mathbb{R} \rightarrow \mathbb{R}$ such that $f_{m}$ has a point $\alpha \in \mathbb{R}$ of primitive period $n$ if and only if $m \lessdot n$.*
$\triangleright$ For example, if $f: \mathbb{R} \rightarrow \mathbb{R}$ has a point $\alpha \in \mathbb{R}$ with primitive period 3 , then $f$ has points $\beta \in \mathbb{R}$ with every primitive period!
¢ $8 \cdot 3 \lessdot 8 \cdot 5 \lessdot 8 \cdot 7 \lessdot \cdots \lessdot 16 \cdot 3 \lessdot 16 \cdot 5 \lessdot 16 \cdot 7 \lessdot \cdots \lessdot 8 \lessdot 4 \lessdot 2 \lessdot 1$

## Realizing Sharkovsky Tails

How do we find functions $f$ whose real periodic points exactly realize any tail of the Sharkovsky ordering?
$\triangleright$ Look no further than $x^{2}+c$ !
Let $\Phi_{n}(x, c)$ be the $n$th dynatomic polynomial for $x^{2}+c$.
$\triangleright \Phi_{n}(a, b)=0$ if and only if a (spiritually) has primitive period $n$ for $x^{2}+b$.

$$
\begin{aligned}
& \Phi_{1}(x, c)=x^{2}-x+c \\
& \Phi_{2}(x, c)=x^{2}+x+c+1
\end{aligned}
$$

For $n \geq 1$, let $c_{n}=\sup \left\{c^{\prime}: \Phi_{n}\left(x, c^{\prime}\right)\right.$ has a real root. $\}$

## Realizing Sharkovsky Tails

For $n \geq 1$, let $c_{n}=\sup \left\{c^{\prime}: \Phi_{n}\left(x, c^{\prime}\right)\right.$ has a real root. $\}$
$\triangleright$ If $c>c_{m}$, then $x^{2}+c$ does not have a real $m$-cycle.
$\triangleright$ If $c<c_{m}$, then $x^{2}+c$ does have a real $m$-cycle.
$\triangleright$ The $c_{n}$ 's exactly line up in the Sharkovsky order!

$$
\begin{gathered}
-\frac{7}{4}=c_{3}<c_{5}<c_{7}<\cdots<c_{6}<c_{15}<c_{21}<\cdots \\
c_{12}<c_{20}<c_{28}<\cdots<c_{4}<c_{2}<c_{1}=\frac{1}{4}
\end{gathered}
$$

## Sharkovsky tails and the Mandelbrot set



## Sharkovsky's Implication

## Theorem (Sharkovsky, 1960's)

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. If there exists a point $\alpha \in \mathbb{R}$ with primitive period $m$, then there exists a point $\beta \in \mathbb{R}$ with primitive period $n$ for every $m \lessdot n$.

How do you prove this??
$\triangleright$ We start with some cycle of period $m$ for a continuous map $f$ and then have to use it to cook up cycles of every length $n$ for $m \lessdot n$.

Seems hard.
$\triangleright$ We must need a deep, powerful theorem to do this...

## Intermediate Value Theorem

## Theorem (IVT)

If $J=[a, b]$ is a closed interval and $f: J \rightarrow J$ is a continuous function, then there exists a fixed point $p \in J$, that is $f(p)=p$.


## Covering Intervals

If $I$ and $J$ are closed intervals, then we say I covers $J$ if $J \subseteq f(I)$
$\triangleright$ We write $I \xrightarrow{f} J$ or just $I \rightarrow J$ if $f$ is understood.

## Lemma (Itinerary Lemma)

Suppose $J_{0} \xrightarrow{f} J_{1} \xrightarrow{f} J_{2} \xrightarrow{f} \cdots \xrightarrow{f} J_{n-1} \xrightarrow{f} J_{0}$ is an $n$-loop of closed intervals. Then there exists a point $p \in J_{0}$ following the loop, which means

$$
\begin{aligned}
& f^{k}(p) \in J_{k} \\
& f^{n}(p)=p
\end{aligned}
$$

An $n$-loop of intervals gives us a point $p$ of period $n$.
$\triangleright$ Caveat: We need to check that $p$ has primitive period $n$.

## 3-Cycles $\Longrightarrow$ All-Cycles



For any $n \geq 2$ we get an $n$-loop:


Itin. Lem.: $\exists p \in I$ such that $f^{n}(p)=p$ and $f^{k}(p) \in J$ for $k<n$.
$\triangleright$ Since $I$ and $J$ only overlap at the endpoints (period 3 )
$p$ must have primitive period $n$.

## 5-Cycles $\Longrightarrow$ Almost All-Cycles

For larger starting cycles we use the same idea, but there are more ways the 5 -cycle can be arranged on the line.


## The Rest of the Story



Keith Burns and Boris Hasselblatt, The Sharkovsky Theorem: A Natural Direct Proof, The American Mathematical Monthly, 118:3, (2011), 229-244.


## Dynamics with Several Functions

Classical dynamics: Study iterations of a single function.

$$
f: X \rightarrow X
$$

New direction: Study mixed iterations of several functions!

$$
f_{1}, f_{2}, \ldots, f_{m}: X \rightarrow X
$$

Dynamical system $=($ Representation of a) Semigroup

$$
\begin{aligned}
& f: X \rightarrow X \Longleftrightarrow\langle f\rangle=\left\{f^{n}: n \geq 0\right\}=\text { Cyclic semigroup } \\
& f_{1}, f_{2}, \ldots, f_{m}: X \rightarrow X \Longleftrightarrow\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle=\text { Semigroup }
\end{aligned}
$$

## Dynamical Semigroups

BIG GOAL: Develop the theory of dynamical semigroups.

$$
\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle
$$

$\triangleright$ Which aspects of "cyclic dynamics" generalize?
$\triangleright$ What new phenomena arise in a non-cyclic setting?

How does Sharkovsky's theorem generalize to the non-cyclic case?

## One Direction

Suppose $f_{1}, f_{2}, \ldots, f_{m}: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions.
$\triangleright$ Let $S \subseteq \mathbb{R}$ be a finite set such that $f_{i}(S) \subseteq S$ for $1 \leq i \leq m$.
$\triangleright S$ is a generalization of a (pre) periodic cycle.


Given that $D=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$ has a real portrait $S$ of this type, for which $w=f_{i_{1}} f_{i_{2}} \cdots f_{i_{k}} \in D$ does it follow that $w$ has a real fixed point?

Example

$\therefore \exists p \in \mathbb{R}$ such that $f g g f g(p)=p$

## Thank you!

