Existence of Periodic Points and Sharkovsky's Theorem

Trevor Hyde Summer@ICERM 2019

Central Question in Arithmetic Dynamics:

If *K* is a field and $f(x) \in K[x]$ is a polynomial, for which $n \ge 1$ does f(x) have a periodic point of period *n* in *K*?

▷ The answer really depends on the field *K*!

Theorem (Baker, 1964)

If $f(x) \in \mathbb{C}[x]$ has degree at least 2 and $n \ge 1$, then there exists a point $\alpha \in \mathbb{C}$ with primitive period n **unless** f(x) is conjugate to $x^2 - \frac{3}{4}$ and n = 2.

Conjecture (Morton-Silverman, 1994)

Suppose $d \ge 2$, then there exists an absolute bound B(d) such that for any polynomial $f(x) \in \mathbb{Q}[x]$ of degree d, if $\alpha \in \mathbb{Q}$ has primitive period n, then $n \le B(d)$.

Consider the following total ordering \lt of the positive integers:

$$3 < 5 < 7 < 9 < \dots < 2 \cdot 3 < 2 \cdot 5 < 2 \cdot 7 < \dots$$
$$\dots < 4 \cdot 3 < 4 \cdot 5 < 4 \cdot 7 < \dots < 8 \cdot 3 < 8 \cdot 5 < 8 \cdot 7 < \dots$$
$$\dots < 8 < 4 < 2 < 1$$

 $\begin{array}{l} (\mathsf{Odds} \geq 3) < (2 \cdot \mathsf{Odds} \geq 3) < (4 \cdot \mathsf{Odds} \geq 3) \\ < (8 \cdot \mathsf{Odds} \geq 3) < \cdots \cdots < (\mathsf{Powers of 2 in reverse order}) \end{array}$

▶ This is called the **Sharkovsky ordering**.

Existence of Periodic Points over \mathbb{R}

 $\mathbf{3} \lessdot \mathbf{5} \lessdot \mathbf{7} \lessdot \mathbf{9} \lessdot \cdots \lessdot \mathbf{2} \cdot \mathbf{3} \lessdot \mathbf{2} \cdot \mathbf{5} \lessdot \mathbf{2} \cdot \mathbf{7} \lessdot \cdots \lessdot \mathbf{4} \cdot \mathbf{3} \lessdot \mathbf{4} \cdot \mathbf{5} \lessdot \mathbf{4} \cdot \mathbf{7} \lessdot \cdots$

Theorem (Sharkovsky, 1960's)

- 1. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a **continuous function**. If there exists a point $\alpha \in \mathbb{R}$ with primitive period m, then there exists a point $\beta \in \mathbb{R}$ with primitive period n for every m < n.
- 2. For every positive integer m there exists some continuous function $f_m : \mathbb{R} \to \mathbb{R}$ such that f_m has a point $\alpha \in \mathbb{R}$ of primitive period n if and only if m < n.*

▷ For example, if $f : \mathbb{R} \to \mathbb{R}$ has a point $\alpha \in \mathbb{R}$ with primitive period 3, then *f* has points $\beta \in \mathbb{R}$ with **every** primitive period!

 $<8\cdot3<8\cdot5<8\cdot7<\cdots<16\cdot3<16\cdot5<16\cdot7<\cdots<8<4<2<1$

How do we find functions *f* whose real periodic points exactly realize any tail of the Sharkovsky ordering? \triangleright Look no further than $x^2 + c!$

Let $\Phi_n(x, c)$ be the *n*th dynatomic polynomial for $x^2 + c$. $\Phi_n(a, b) = 0$ if and only if *a* (spiritually) has primitive period *n* for $x^2 + b$.

$$\Phi_1(x,c) = x^2 - x + c$$

 $\Phi_2(x,c) = x^2 + x + c + 1$

For $n \ge 1$, let $c_n = \sup\{c' : \Phi_n(x, c') \text{ has a real root.}\}$

For $n \ge 1$, let $c_n = \sup\{c' : \Phi_n(x, c') \text{ has a real root.}\}$

- ▷ If $c > c_m$, then $x^2 + c$ **does not** have a real *m*-cycle.
- ▷ If $c < c_m$, then $x^2 + c$ **does** have a real *m*-cycle.
- ▷ The *c*^{*n*}'s exactly line up in the Sharkovsky order!

$$\begin{aligned} -\frac{7}{4} &= c_3 < c_5 < c_7 < \cdots < c_6 < c_{15} < c_{21} < \cdots \\ c_{12} < c_{20} < c_{28} < \cdots < c_4 < c_2 < c_1 = \frac{1}{4} \end{aligned}$$

Sharkovsky tails and the Mandelbrot set

🛯 ୬ ବ ୯

Theorem (Sharkovsky, 1960's)

Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function. If there exists a point $\alpha \in \mathbb{R}$ with primitive period m, then there exists a point $\beta \in \mathbb{R}$ with primitive period n for every m < n.

How do you prove this??

▷ We start with some cycle of period m for a continuous map f and then have to use it to cook up cycles of every length n for m < n.

Seems hard.

▷ We must need a deep, powerful theorem to do this...

Theorem (IVT)

If J = [a, b] is a closed interval and $f : J \rightarrow J$ is a continuous function, then there exists a fixed point $p \in J$, that is f(p) = p.

If *I* and *J* are closed intervals, then we say *I* **covers** *J* if $J \subseteq f(I)$ \triangleright We write $I \xrightarrow{f} J$ or just $I \rightarrow J$ if *f* is understood.

Lemma (Itinerary Lemma)

Suppose $J_0 \xrightarrow{f} J_1 \xrightarrow{f} J_2 \xrightarrow{f} \cdots \xrightarrow{f} J_{n-1} \xrightarrow{f} J_0$ is an n-loop of closed intervals. Then there exists a point $p \in J_0$ following the loop, which means

1.
$$f^k(p) \in J_k$$

2.
$$f^n(p) = p$$
.

An *n*-loop of intervals gives us a point *p* of period *n*.

▷ **Caveat:** We need to check that *p* has *primitive* period *n*.

3-Cycles \Longrightarrow All-Cycles

For any $n \ge 2$ we get an *n*-loop:

Itin. Lem.: $\exists p \in I$ such that $f^n(p) = p$ and $f^k(p) \in J$ for k < n. \triangleright Since *I* and *J* only overlap at the endpoints (period 3) p must have primitive period *n*.

5-Cycles \implies Almost All-Cycles

For larger starting cycles we use the same idea, but there are more ways the 5-cycle can be arranged on the line.

୍ରର୍ବ

The Rest of the Story

Keith Burns and Boris Hasselblatt, The Sharkovsky Theorem: A Natural Direct Proof, The American Mathematical Monthly, 118:3, (2011), 229-244.

Classical dynamics: Study iterations of a single function.

$$f: X \to X$$

New direction: Study mixed iterations of several functions!

$$f_1, f_2, \ldots, f_m : X \to X$$

Dynamical system = (Representation of a) Semigroup

 $f: X \to X \iff \langle f \rangle = \{f^n : n \ge 0\} =$ Cyclic semigroup

 $f_1, f_2, \ldots, f_m : X \to X \iff \langle f_1, f_2, \ldots, f_m \rangle =$ Semigroup

BIG GOAL: Develop the theory of dynamical semigroups.

 $\langle \mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_m \rangle$

- Which aspects of "cyclic dynamics" generalize?
- What new phenomena arise in a non-cyclic setting?

How does Sharkovsky's theorem generalize to the non-cyclic case?

One Direction

Suppose $f_1, f_2, \ldots, f_m : \mathbb{R} \to \mathbb{R}$ are continuous functions.

▶ Let $S \subseteq \mathbb{R}$ be a finite set such that $f_i(S) \subseteq S$ for $1 \le i \le m$.

▷ S is a generalization of a (pre)periodic cycle.

Given that $D = \langle f_1, f_2, \dots, f_m \rangle$ has a real portrait *S* of this type, for which $w = f_{i_1}f_{i_2}\cdots f_{i_k} \in D$ does it follow that *w* has a real fixed point?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - ∽��や

Thank you!