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Existence of Periodic Points

Central Question in Arithmetic Dynamics:
If K is a field and f(x) € K[x] is a polynomial, for which n > 1
does f(x) have a periodic point of period n in K?

> The answer really depends on the field K!

Theorem (Baker, 1964)

If f(x) € C[x] has degree at least 2 and n > 1, then there exists a
point o € C with primitive period n unless f(x) is conjugate to
x?—3andn=2

Conjecture (Morton-Silverman, 1994)

Suppose d > 2, then there exists an absolute bound B(d) such
that for any polynomial f(x) € Q[x] of degree d, if « € Q has
primitive period n, then n < B(d).



Existence of Periodic Points over R

Consider the following total ordering < of the positive integers:

3<5<«7<9<---<«2-3<«2:5<2-7<---
<4.3<4.5<4.7<---<8-3<8-5<8-7<---
<8<l <2<

(Odds >3) < (2-0dds > 3) < (4-0dds > 3)
< (8-0dds > 3)<----.- < (Powers of 2 in reverse order)

> This is called the Sharkovsky ordering.



Existence of Periodic Points over R

3<5«<7<9<--.<2-3<2-5<2-7<---<4.3<4.-5<4.-T<.-..

Theorem (Sharkovsky, 1960’s)

Suppose f : R — R is a continuous function. If there exists
a point o € R with primitive period m, then there exists a
point 3 € R with primitive period n for every m < n.

For every positive integer m there exists some continuous
function fp, : R — R such that f,, has a point o € R of
primitive period n if and only if m < n.*

> For example, if f : R — R has a point o € R with primitive
period 3, then f has points § € R with every primitive period!

<8.3<8.5«<8.7<-..<16-3<16-5<16.-7<...<8<4<2<1



Realizing Sharkovsky Tails

How do we find functions f whose real periodic points exactly
realize any tail of the Sharkovsky ordering?
> Look no further than x2 + c!

Let ®p(x, ) be the nth dynatomic polynomial for x? + c.
> ®p(a,b) = 0if and only if a (spiritually) has primitive period n
for x2 + b.

di(x,c) =x>—x+c
®y(x,c) =x* +x+C+1

Forn > 1, let ¢, = sup{c’ : ®,(x,c’) has a real root.}



Realizing Sharkovsky Tails

Forn > 1, let ¢, = sup{c’ : ®y(x,c’) has areal root.}
> If ¢ > cm, then x2 + ¢ does not have a real m-cycle.
> If ¢ < cm, then x2 + ¢ does have a real m-cycle.

> The cp’s exactly line up in the Sharkovsky order!

—F=C3<C5<C7<- - <C6<Ci5<Co <+

_

Ci2 <Cp < Cg <" <y <C2<Cy =75



Sharkovsky tails and the Mandelbrot set
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Sharkovsky’s Implication

Theorem (Sharkovsky, 1960’s)

Suppose f : R — R is a continuous function. If there exists a
point o € R with primitive period m, then there exists a point
B € R with primitive period n for every m < n.

How do you prove this??

> We start with some cycle of period m for a continuous map f
and then have to use it to cook up cycles of every length n for
m <n.

Seems hard.
> We must need a deep, powerful theorem to do this...



Intermediate Value Theorem

Theorem (IVT)

If J = [a,b] is a closed interval and f : J — J is a continuous
function, then there exists a fixed point p € J, thatis f(p) = p.

Y=£(x)




Covering Intervals

If I and J are closed intervals, then we say | covers J if J C f(/)
> We write | 55 J orjust/ — Jif f is understood.

Lemma (Itinerary Lemma)

Suppose Jy LN J1 LN Jo LA In_1 LA Jo is an n-loop of
closed intervals. Then there exists a point p € Jy following the
loop, which means

f“(p) € Ji

f'(p) = p.

An n-loop of intervals gives us a point p of period n.
> Caveat: We need to check that p has primitive period n.



3-Cycles — All-Cycles
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For any n > 2 we get an n-loop:

I‘—“I—"J‘_’ e —mI—T

- ———

n

Itin. Lem.: 3p < [ such that f"(p) = p and f*(p) € J fork < n.
> Since I and J only overlap at the endpoints (period 3)
p must have primitive period n.



5-Cycles —> Almost All-Cycles

For larger starting cycles we use the same idea, but there are
more ways the 5-cycle can be arranged on the line.
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The Rest of the Story

Keith Burns and Boris Hasselblatt, The Sharkovsky Theo-
rem: A Natural Direct Proof, The American Mathematical
Monthly, 118:3, (2011), 229-244.




Dynamics with Several Functions

Classical dynamics: Study iterations of a single function.
f: X=X
New direction: Study mixed iterations of several functions!
fi,fo, . fm X=X
Dynamical system = (Representation of a) Semigroup

f:X— X<« (f)={f":n>0} = Cyclic semigroup

f1,f2,...,fm :X—>X<:><f1,f2,...,fm>:Semigroup



Dynamical Semigroups

BIG GOAL: Develop the theory of dynamical semigroups.

(f1,fo, ... fm)
> Which aspects of “cyclic dynamics” generalize?

> What new phenomena arise in a non-cyclic setting?

How does Sharkovsky’s theorem generalize to the
non-cyclic case?



Suppose fi,f5, ..., fn : R — R are continuous functions.
> Let S C R be afinite set such that fj(S) C Sfor1<i<m.

> Sis a generalization of a (pre)periodic cycle.
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Giventhat D = (fy,fy,...,fm ) has a real portrait S of this type,
for whichw = f,.f;, - - - f;, € D does it follow that w has a real
fixed point?
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Thank you!




