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Existence of Periodic Points

Central Question in Arithmetic Dynamics:
If K is a field and f(x) ∈ K[x] is a polynomial, for which n ≥ 1
does f(x) have a periodic point of period n in K?

. The answer really depends on the field K!

Theorem (Baker, 1964)
If f(x) ∈ C[x] has degree at least 2 and n ≥ 1, then there exists a
point α ∈ C with primitive period n unless f(x) is conjugate to
x2 − 3

4 and n = 2.

Conjecture (Morton-Silverman, 1994)
Suppose d ≥ 2, then there exists an absolute bound B(d) such
that for any polynomial f(x) ∈ Q[x] of degree d, if α ∈ Q has
primitive period n, then n ≤ B(d).



Existence of Periodic Points over R

Consider the following total ordering l of the positive integers:

3l 5l 7l 9l · · ·l2 · 3l 2 · 5l 2 · 7l · · ·
· · ·l4 · 3l 4 · 5l 4 · 7l · · ·l8 · 3l 8 · 5l 8 · 7l · · ·
· · ·l8l 4l 2l 1

(Odds ≥ 3) l (2 · Odds ≥ 3) l (4 · Odds ≥ 3)

l (8 · Odds ≥ 3) l · · · · · ·l (Powers of 2 in reverse order)

. This is called the Sharkovsky ordering.



Existence of Periodic Points over R

3l 5l 7l 9l · · ·l2 · 3l 2 · 5l 2 · 7l · · ·l4 · 3l 4 · 5l 4 · 7l · · ·

Theorem (Sharkovsky, 1960’s)

1. Suppose f : R→ R is a continuous function. If there exists
a point α ∈ R with primitive period m, then there exists a
point β ∈ R with primitive period n for every ml n.

2. For every positive integer m there exists some continuous
function fm : R→ R such that fm has a point α ∈ R of
primitive period n if and only if ml n.∗

. For example, if f : R→ R has a point α ∈ R with primitive
period 3, then f has points β ∈ R with every primitive period!

l8 · 3l 8 · 5l 8 · 7l · · ·l 16 · 3l 16 · 5l 16 · 7l · · ·l8l 4l 2l 1



Realizing Sharkovsky Tails

How do we find functions f whose real periodic points exactly
realize any tail of the Sharkovsky ordering?
. Look no further than x2 + c!

Let Φn(x, c) be the nth dynatomic polynomial for x2 + c.
. Φn(a, b) = 0 if and only if a (spiritually) has primitive period n
for x2 + b.

Φ1(x, c) = x2 − x + c
Φ2(x, c) = x2 + x + c + 1

For n ≥ 1, let cn = sup{c′ : Φn(x, c′) has a real root.}



Realizing Sharkovsky Tails

For n ≥ 1, let cn = sup{c′ : Φn(x, c′) has a real root.}

. If c > cm, then x2 + c does not have a real m-cycle.

. If c < cm, then x2 + c does have a real m-cycle.

. The cn’s exactly line up in the Sharkovsky order!

− 7
4 = c3 < c5 < c7 < · · · < c6 < c15 < c21 < · · ·
c12 < c20 < c28 < · · · < c4 < c2 < c1 = 1
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Sharkovsky tails and the Mandelbrot set



Sharkovsky’s Implication

Theorem (Sharkovsky, 1960’s)
Suppose f : R→ R is a continuous function. If there exists a
point α ∈ R with primitive period m, then there exists a point
β ∈ R with primitive period n for every ml n.

How do you prove this??
. We start with some cycle of period m for a continuous map f
and then have to use it to cook up cycles of every length n for
ml n.

Seems hard.
. We must need a deep, powerful theorem to do this...



Intermediate Value Theorem

Theorem (IVT)
If J = [a, b] is a closed interval and f : J→ J is a continuous
function, then there exists a fixed point p ∈ J, that is f(p) = p.



Covering Intervals

If I and J are closed intervals, then we say I covers J if J ⊆ f(I)
. We write I f−→ J or just I→ J if f is understood.

Lemma (Itinerary Lemma)
Suppose J0

f−→ J1
f−→ J2

f−→ · · · f−→ Jn−1
f−→ J0 is an n-loop of

closed intervals. Then there exists a point p ∈ J0 following the
loop, which means
1. fk(p) ∈ Jk

2. fn(p) = p.

An n-loop of intervals gives us a point p of period n.
. Caveat: We need to check that p has primitive period n.



3-Cycles =⇒ All-Cycles

For any n ≥ 2 we get an n-loop:

Itin. Lem.: ∃ p ∈ I such that fn(p) = p and fk(p) ∈ J for k < n.
. Since I and J only overlap at the endpoints (period 3)
p must have primitive period n.



5-Cycles =⇒ Almost All-Cycles
For larger starting cycles we use the same idea, but there are
more ways the 5-cycle can be arranged on the line.



The Rest of the Story

Keith Burns and Boris Hasselblatt, The Sharkovsky Theo-
rem: A Natural Direct Proof, The American Mathematical
Monthly, 118:3, (2011), 229-244.



Dynamics with Several Functions

Classical dynamics: Study iterations of a single function.

f : X → X

New direction: Study mixed iterations of several functions!

f1, f2, . . . , fm : X → X

Dynamical system = (Representation of a) Semigroup

f : X → X ⇐⇒ 〈 f 〉 = {fn : n ≥ 0} = Cyclic semigroup

f1, f2, . . . , fm : X → X ⇐⇒ 〈 f1, f2, . . . , fm 〉 = Semigroup



Dynamical Semigroups

BIG GOAL: Develop the theory of dynamical semigroups.

〈 f1, f2, . . . , fm 〉

. Which aspects of “cyclic dynamics” generalize?

. What new phenomena arise in a non-cyclic setting?

How does Sharkovsky’s theorem generalize to the
non-cyclic case?



One Direction

Suppose f1, f2, . . . , fm : R→ R are continuous functions.

. Let S ⊆ R be a finite set such that fi(S) ⊆ S for 1 ≤ i ≤ m.

. S is a generalization of a (pre)periodic cycle.

Given that D = 〈 f1, f2, . . . , fm 〉 has a real portrait S of this type,
for which w = fi1fi2 · · · fik ∈ D does it follow that w has a real
fixed point?



Example



Thank you!


